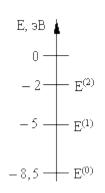
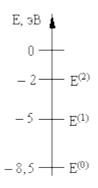
## 5.2.1. Планетарная модель атома

## **5.2.2.** Постулаты Бора. Излучение и поглощение фотонов при переходе атома с одного уровня энергии на другой

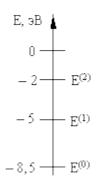
- **27.1.** F4C2AB A25 В сосуде находится разреженный атомарный водород. Атом водорода в основном состоянии ( $E_1 = -13,6$  эВ) поглощает фотон и ионизуется. Электрон, вылетевший из атома в результате ионизации, движется вдали от ядра со скоростью v = 1000 км/с. Какова энергия поглощённого фотона? Энергией теплового движения атомов водорода пренебречь.
  - 1) 13,6 9B 2) 16,4 9B 3) 19,3 9B 4) 27,2 9B
- **27.2.** 6A5D87 A25 В сосуде находится разреженный атомарный водород. Атом водорода в основном состоянии ( $E_1 = -13,6$  эВ) поглощает фотон и ионизуется. Электрон, вылетевший из атома в результате ионизации, движется вдали от ядра со скоростью 1000 км/с. Какова длина волны поглощённого фотона? Энергией теплового движения атомов водорода пренебречь.
  - 1) 46 HM 2) 64 HM 3) 75 HM 4) 91 HM
- **32.1.** 36В1F8 1EF4D5 Покоящийся атом водорода в основном состоянии ( $E_1$  = 13,6 эВ) поглощает в вакууме фотон с длиной волны  $\lambda$  = 80 нм. С какой скоростью движется вдали от ядра электрон, вылетевший из атома в результате ионизации? Кинетической энергией образовавшегося иона пренебречь.
- **32.2.** 6D6EAB Покоящийся атом излучает фотон с энергией **16,32·10**<sup>-19</sup> **Дж** в результате перехода электрона из возбуждённого состояния в основное. Атом в результате отдачи начинает двигаться поступательно в противоположном направлении с кинетической энергией **8,81·10**<sup>-27</sup> **Дж**. Найдите массу атома. Скорость атома считать малой по сравнению со скоростью света.
- **32.3.** ЕВ5С27 Уровни энергии электрона в атоме водорода задаются формулой  $E_n = -(13.6/n^2)$  эВ, где n=1,2,3,... При переходе из состояния  $E_2$  в состояние  $E_1$  атом испускает фотон. Поток таких фотонов падает на поверхность фотокатода. Запирающее напряжение для фотоэлектронов, вылетающих с поверхности фотокатода,  $U_{3an}=6,1$  В. Какова частота света  $v_{\kappa p}$ , соответствующая красной границе фотоэффекта для материала поверхности фотокатода?
- 32.4. Е99В4F Уровни энергии электрона в атоме водорода задаются формулой


$$E_n = -\frac{13,6}{n^2} g_{B_n}$$

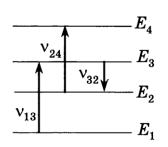
- где  $n=1,2,3,\ldots$ . При переходе атома из состояния  $E_2$  в состояние  $E_1$  атом испускает фотон. Попав на поверхность фотокатода, фотон выбивает фотоэлектрон. Длина волны света, соответствующая красной границе фотоэффекта для материала поверхности фотокатода,  $\lambda_{\kappa p}=300~\mu M$ . Чему равна максимальная возможная скорость фотоэлектрона?


**32.6.** 9С8F39 Уровни энергии электрона в атоме водорода задаются формулой  $E_0 = -\frac{13.6}{n^2} \mathfrak{I} \mathcal{B}$ , где n=1,2,3,... . При переходе атома из состояния  $E_2$  в состояние  $E_1$  атом испускает фотон. Попав на поверхность фотокатода, фотон выбивает фотоэлектрон. Длина волны света, соответствующая красной границе фотоэффекта для материала поверхности фотокатода,  $\lambda_{\kappa p} = 300$  нм. Чему равен максимально возможный модуль импульса фотоэлектрона?

**32.7.** 765857 Уровни энергии электрона в атоме водорода задаются формулой  $E_n = -(13,6/n^2)$  эВ, где  $n=1,2,3,\ldots$  При переходе атома из состояния  $E_2$  в состояние  $E_1$  атом испускает фотон. Попав на поверхность фотокатода, этот фотон выбивает фотоэлектрон. Частота света, соответствующая красной границе фотоэффекта для материала поверхности фотокатода,  $v_{\rm kp} = 6\cdot 10^{14}$  Гц. Чему равен максимально возможный импульс фотоэлектрона?

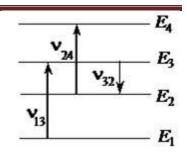

**32.8.** 7В418F 95F8DB Предположим, что схема энергетических уровней атомов некоего вещества имеет вид, показанный на рисунке, и атомы находятся в состоянии с энергией  $E^{(1)}$ . Электрон, столкнувшись с одним из таких атомов, отскочил, приобретя некоторую дополнительную энергию. Импульс электрона после столкновения с покоящимся атомом оказался равным  $1,2\cdot10^{-24}$  кг·м/с. Определите кинетическую энергию электрона до столкновения. Возможностью испускания света атомом при столкновении с электроном пренебречь.




**32.9.** 7В418F Предположим, что схема энергетических уровней атомов некоего вещества имеет вид, показанный на рисунке, и атомы находятся в состоянии с энергией  $E^{(1)}$ . Электрон, столкнувшись с одним из таких атомов, отскочил, приобретя некоторую дополнительную энергию. Импульс электрона после столкновения с покоящимся атомом оказался равным  $1,2\cdot10^{-24}$  кг·м/с. Определите кинетическую энергию электрона до столкновения. Возможностью испускания света атомом при столкновении с электроном пренебречь.



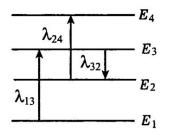
**32.10.** А1DD97 Предположим, что схема энергетических уровней атомов некоего вещества имеет вид, показанный на рисунке, и атомы находятся в состоянии с энергией  $E^{(1)}$ . Электрон, движущийся с кинетической энергией 1,5 эB, столкнулся с одним из таких атомов и отскочил, приобретя некоторую дополнительную энергию. Определите импульс электрона после столкновения, считая, что до столкновения атом покоился. Возможностью испускания света атомом при столкновении с электроном пренебречь.



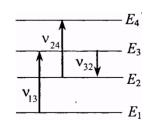

**32.11.**На рисунке представлены энергетические уровни электронной оболочки атома и указаны частоты фотонов, излучаемых и поглощаемых при некоторых переходах между ними. Какова максимальная длина волны фотонов, излучаемых атомом при любых возможных переходах между уровнями  $E_1$ ,  $E_2$ ,  $E_3$  и  $E_4$ , если  $\mathbf{v}_{13} = 7 \cdot 10^{14} \, \Gamma \mathbf{u}$ ,  $\mathbf{v}_{24} = 5 \cdot 10^{14} \, \Gamma \mathbf{u}$ ,  $\mathbf{v}_{32} = 3 \cdot 10^{14} \, \Gamma \mathbf{u}$ ?



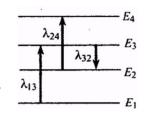
## Решение задач ЕГЭ часть С: Физика атома


**32.12.**На рисунке представлены энергетические уровни электронной оболочки атома и указаны частоты фотонов, излучаемых и поглощаемых при некоторых переходах между ними. Какова максимальная длина волны фотонов, излучаемых атомом при любых возможных переходах между уровнями  $E_1$ ,  $E_2$ ,  $E_3$  и  $E_4$ , если  $v_{13} = 7 \cdot 10^{14}$   $\Gamma \mu$ ,  $v_{24} = 5 \cdot 10^{14}$   $\Gamma \mu$ ,  $v_{32} = 3 \cdot 10^{14}$   $\Gamma \mu$ ?

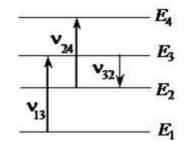



**32.13.**На рисунке изображены энергетические уровни атома и указаны длины волн фотонов, излучаемых и поглощаемых при переходах с одного уровня на другой. Экспериментально установлено, что минимальная длина волны для фотонов, излучаемых при переходах между этими уровнями, равна  $l_0 = 250$  нм. Какова величина  $l_{13}$ , если  $l_{32} = 545$  нм,  $l_{24} = 400$  нм?




**32.14.**На рисунке изображены энергетические уровни атома и указаны длины волн фотонов, излучаемых и поглощаемых при переходах с одного уровня на другой. Какова длина волны фотонов, излучаемых при переходе с уровня  $E_4$  на уровень  $E_1$ , если  $\lambda_{13} = 400$  нм,  $\lambda_{24} = 500$  нм,  $\lambda_{32} = 600$  нм?




**32.15.**На рисунке представлены энергетические уровни электронной оболочки атома и указаны частоты фотонов, излучаемых и поглощаемых при переходах с одного уровня на другой. Какова длина волны фотонов, поглощаемых при переходе с уровня  $E_1$  на уровень  $E_4$ , если  $v_{13} = 6 \cdot 10^{14} \Gamma u$ ,  $v_{24} = 4 \cdot 10^{14} \Gamma u$ ,  $v_{32} = 3 \cdot 10^{14} \Gamma u$ ?



**32.16.**На рисунке изображены несколько энергетических уровней атома и указаны длины волн фотонов, излучаемых и поглощаемых при переходах с одного уровня на другой. Экспериментально установлено, что минимальная длина волны для фотонов, излучаемых при переходах между этими уровнями, равна  $\lambda_0 = 250$  нм.  $\lambda_{32} = 545$  нм,  $\lambda_{24} = 400$  нм. Какова величина  $\lambda_{13}$ ?



**32.17.**На рисунке представлены энергетические уровни электронной оболочки атома и указаны частоты фотонов, излучаемых и поглощаемых при некоторых переходах между ними. Какова максимальная длина волны фотонов, излучаемых атомом при любых возможных переходах между уровнями  $E_1$ ,  $E_2$ ,  $E_3$  и  $E_4$ , если  $v_{13} = 7 \cdot 10^{14}$   $\Gamma$ ц,  $v_{24} = 5 \cdot 10^{14}$   $\Gamma$ ц,  $v_{32} = 3 \cdot 10^{14}$   $\Gamma$ ц?



**32.18.** FCD901 Электрон, имеющий импульс  $p = 2 \cdot 10^{-24} \text{ кг·м/c}$ , сталкивается с покоящимся протоном, образуя атом водорода в состоянии с энергией  $E_n$  (n = 2). В процессе образования атома излучается фотон. Найдите частоту v этого фотона, пренебрегая кинетической энергией атома. Уровни энергии электрона в атоме водорода задаются формулой  $E_n = -(13.6/n^2)$  эВ, где  $n = 1, 2, 3, \ldots$ 

## Решение задач ЕГЭ часть С: Физика атома

- **32.19.**В сосуде находится разреженный атомарный водород. Атом водорода в основном состоянии ( $E_1 = -13,6 \ \jmath B$ ) поглощает фотон с частотой  $3,7 \cdot 10^{15} \ \Gamma \mu$ . С какой скоростью  $\nu$  движется вдали от ядра электрон, вылетевший из атома в результате ионизации? Энергией теплового движения атомов водорода пренебречь.
- **32.С6.1.** Фотокатод с работой выхода  $4,42\cdot10^{-19}$  Дж освещается светом. Вылетевшие из катода электроны попадают в однородное магнитное поле с индукцией  $2\cdot10^{-4}$  Тл перпендикулярно линиям индукции этого поля и движутся по окружностям. Максимальный радиус такой окружности 2 см. Какова частота v падающего света?